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By generalizing the unfinished investigation of Jacobi [l], Suslov showed in @] 
and [3] that, knowing the complete integral W of a first order partial differential 
equation we can construct a set of first integrals of the equations of motion of 
a mechanical system with constraint multipliers. Suslov confined himself to the 
case when the constraints imposed on the system are specified in a finite form. 
For such systems the set of the first integrals mentioned above defines the general 
solution of the equations of motion, thus providing a method of integrating these 
equations. 

A problem of extending this method to cover nonholonomic systems engaged 
the efforts of the authors of [4 - lo], [9 - 121, [13. 141. The author of [S] est- 
ablished that in the case of nonholonomic constraints the integral W must satisfy 
an additional system of equations, therefore the set of first integrals indicated 

by Suslov, generally speaking, defines a particular solution of the equations of 

motion. The authors of [12. 131 (see also the dissertation of E,Kh. Naziev 
“Certain Problems of Analytical Dynamics”, MGLJ. 1969) obtained the necessary 

and sufficient conditions which must be imposed on the equations of constraints 

and on the integral W,in an explicit form. When these conditions hold, the Sus- 

lov method can be used to obtain a particular solution of equations with multip- 

liers of nonholonomic constraints. The conditions however are all different. In 
Sect. 1 of the present paper we show that the most general of these conditions 

[ 121 are not necessary and we obtain the necessary conditions. In Sect 2 we 
prove the sufficiency of our conditions and show that the sufficiency of [lo, 123 

conditions follows as a particular case. 
Compatibility of the equations determining the integral W was studied in [lo, 

121 by the usual method of constructing all possible Poisson brackets. In Sects. 
3 and 4 we show that the integral W needs not, in fact, satisfy the equations ob- 
tained by making the Poisson brackets all equal to zero. The case of a homog- 
eneous sphere rolling on a plane without slipping is used as an example. 

1. Let Q1, .., qn be the generalized coordinates of a mechanical system the constraints 
of which are given by the equations 

i A,j (‘9 Ql,. * * 7 q,) Qj’ + Ai, (tt QIt . . * 9 q,) = 0 (i = 1, . . . 9 k < n) (1.1) 
i=l 

Equations of motion can be written in canonical variables q and p (pj = BL/aq’j’), 
and L is the Lagrangian function of the system 
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qj 
pj’ = - !++ 2 hiAij (j=f,...,n) (f.9 

.i i-1 

where ;li are the multipliers of constraints (1.1). For the constraints given in a finite 
form, i.e. for 

A,j = ~ ) 
aFi 

40 -at (i=f ,..., n; i==l,..., k) 

Suslov showed, after calculating the total variation of the action function w(t, fo, Pry ..a~ 
t 

Pnt 910, -*-, q*O) = i Lit with respect to the coordinates q and initial conditions pb 
” 
10 

compatible with the constraints, that equations (I. 2) admit the following first integrals 

Pj =$$+; MiAij 
i i=l 

0.3) 

aWJ&z, = bj (j==l,...,n) (1.4) 

Here M+ denote certain functions which can be determined by inserting the expressions 
(1.3) for the impulses into the constraint equations and solving the resulting system of 

algebraic equations for Mi. We note that the corresponding determinant 

is always positive provided that the rank II Aijjj = k’ and W (t, ql, . . . t q,,, al,. . . , an) is 

the complete integral of the equation 
0.5) 

t a k 

$ + 2 M+Ai, + H t, (11, *. . t Qn, g+ 2 Mid,,, *. -7 g +J$ 
i 

Midin 

i=l > 
= 0 

i=l n i=l 

where aj and bj are constants. 
Strictly speaking, the relations (1.3) represent the integrals of a system of equations 

obtained from (1.2) by replacing in the latter hi by Ml’ (i = 1, . . . . k).Suslov has shown 
that along the trajectories of Eqs. (1.2) we have Mi = IL&t (i = 1, . . . . k) and in the 
third chapter of p] he gave another proof of these formulas, using however the fact that 

(1.3) represent the first integrals of (1.2). 
The author of [4 - lo] obtained certain conditions of existence of the integrals of the 

qpe (1.3) and (1.4) of Eqs. (1.2) for the systems with nonholonomi~ homogeneous con- 
straints (1.1) (Asa = 0, i = 1, . . . . k), first for the scleronomous system [6] aild later for 

the rheonomic systems 19-J. Seeking the integrals of (1.2) in the form 

pj = 3tj (tl gl, . . , ,9,) (i=i,...,n) W) 

he gave the name of “potential” [6] to the method of integrating the equations in which 
the relation 7~ 

2 Vj’ - H (t, q,, . . . , q,,, nl, . . . , n,) = 9 (1.7) 
j=l 

holds along the solution of (1.2). 
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The Hamilton-Jacobi method of integrating the equations of motion of an unrestricted 
system represents a particular example of the “potential” method and the conditions 
Qjia’3 &Tj / aqh - alth / aqf = 0, (i, h - 1, . . . . n) wnich hold, indicate that the impulse 

field is irrotational. 
We feel however that the name “potential method” is not justified, although some 

authors employ it 19, 141, since some of the quantities ojh may differ from zero even 

in the case of a restricted holonomic system, If (1.7) holds, then [ 10, 121 by virtue of 
(1.1) the relations (1.3) hold together with 

i: i, MiAij(6qj*-~6qj)=0 
i-l j=l 

W) 

in which bqj (i = i, . . . . n) denote possible translations of the system. 
For scleronomous systems with the constraint equations solved for ql’, . . . . qr’, 

i Aijqj’ = 0 (Atj = b,j for i < k; Aij = - ad(Qrl.. . I ‘3,) for i > k) (1.9) 

j-1 

we can set 
(i = 1, . . . . k < n - 1) 

&7,’ - (x = k + i,. . . , n) 

k+l,....n 

A:s,r, (q’,b?r - q,‘&?,) V = 1, . . . , k) 

where 

(1.10) 

As we know. the necessary and sufficient condition of integrability of (1.9) can be ob- 
2;” by equating all A:,,,) to zero. Using this notation we can now write (1.8) in the 

k k+l,...,n 

2 2 Minis,,) (Q*‘bC?p - Q,‘bqJ = O (Ml) 
f=l ($r) 

Hence, in accordance with an assertion in [ 10, 121 by virtue of independence of the 
quantities a,,? = q,lq, - q,‘bq, (k + 1 < I < r = k + 2, . . . . n) it follows that 

i Mihf*,r) a O (k+i<s<r=k+2,. ..,n) (1.12) 
G-1 

Let us set n - k > 2 and consider the above derivation in more detail. Conditions 
(1.12) are obtained for each pair of indices ul and a,(k f 1 < a, < u1 = k + &...,n) 

from (1.11) with o,~,,* # 0 and o,,, = 0 (k f i < r < r = k i- 2. . . . . n; s # al,? # 4). 

consequently they hold when q’,, = 0 (a, = k + 1, . . . . n; u, # ulr u1 # u,) since 

Q % 0 G,,b* + LPCI,,,, + q’a,%,,,, 3 0. On the other hand the functions Mi (i = 1, . . . . k) 
which can be found using the procedure described above are linear forms of a#‘/ i?qj 
(i = i, . . . . n) but. according to (1.3) aW / aqj depend on the impulses and hence on 
the velocities qh’ (h = 1 , . . . . n). Therefore the conditions (1.12) are not necessary when 

n-k>>. 
Since the quantities &I, (r = k + 1, . . . . n) are independent, the following necessary 

conditions yield from (1.11): 
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i=l s=k+l 

which on the basis of the relations (1.2) and (1.3) can be represented in the form 

5 i 
Miht,r) ap 

E =O when pj = T +i M,Alj (i = i,. . , n) (1.13) 
131 a=k+l 8 J I=1 

(r = k + 1, . . . . n) 

It was noted in [13] that the conditions of existence of the integrals (1.3) in particular 
the conditions (1.12)) given in [6, 9, 10, 121 are regarded by the authors of [lo, 111 

as both,necessary and sufficient, without any reservations. The author of [13] used the 
equations of motion (1.2) as the basis for assuming that,on one hand Ml’ = hl (I = 1, . . . . 

. . . . k), and on the other hand MI can be determined by means cf the procedure given 
above. The relations (1.3) were differentiated with respect to the time and concluded 

that the necessary and sufficient conditions could be reduced to a single condition of in- 
tegrability of the constraints (1.1) (see also [17]). This argument is however false. The 
author of [11] gave an example of a nonholonomic system in which the relations of the 
form (1.3) and (1.4) are integrals of motion. 

Naziev (see abstract) similarly employed both of the above definitions of the functions 

Mr without however proving their equivalence. We note e. g. that for the holonomic 

systems with constraints (1.9) (below we show that the integrals (1.3) and (1.4) define 
the general solution of the equations of motion of such systems), MI’ # Xl for at least 

one combination of the indices (see 2.3)) when &Q / a7, # 0 (i, 1 = ? . . . . k; s = k + 1, 

. ..( n) Therefore Naziev’s necessary and sufficient conditions of existence of the integrals 

of the form (1.3) and (1.4) 

(a, B=O,l, . . ., n), p. = t) (1 .i4) 

are not necessary in the general case (1.1). For the stationary, Chaplygin-type constraints 

(1.9) aij = aij (qk+l, . . ..&(i = I,..., k; i = 1, *--v n) the formulas (1.12) am (1.14) 

coincide. 
Thus the question of sufficiency of conditions (1.12) remains open. 

2. For a scleronomous system whose kinetic energy is a homogeneous form of the 
velocities, the equations of constraints (1.9) in canonical variables have the form 

i Ai,iasph = 0. (i=l,...,k) 

j, h=l h I 

(2.19 

let us consider the quantities 

‘h = P 
aw -i MA,, (h=l,...,n) 

1=1 

in which the functions Mi represent a solution of the following system of equations 

i A~~~Z(_??$-~ MIA,,)=0 (i=i,..., k) 

j, h-l 1=1 

(2.2) 
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andW(t, ql, . . . . qnr al, . . . . a,,) is an integral of (1.5) satisfying the auxilliary system (1.13) 
For this reason some of the constants 01, . . . . an are not arbitrary. 

From (2.1) and (2.2) it follows that 

i Aijaseh =0 (i=l,...,h) 

i, h=l h j 

We find the derivatives dEh / dt (h = 1, . . . . n) using Eqs. (1.2) and (1.9) 

k 

(2.3) 

(2.4) 

. 9 n) 

From (1.5) we have 

(2.5) 

(h = I,...+) 

Comparing (2.4) with (2.5) and using (1.2), (1.9) (1.10) and (1.13) we obtain 

~,-=i AlhpLI + i i i 6 PH 
hr 1 @,*) apjap, 

hf A’ - .sj (h = 1,. . , n) 

I=1 j=l I=1 r,s=k+l 

! 2.6) 
i=ls=kfl 

Jet us differentiate (2.3) with respect to time. By (1.2) and (2.6) we have 
k n 

2 2 
A a2H At#t 

%?p,apj 
= pi (qlv . . . 9 q,, PI* . . . , P,, e,, . - . 7 8,) (2.7) 

I=1 j,h=l 

where the functions @i represent certain forms linear and homogeneous in eh. Conse- 
quently, using (2.7) to eliminate pi (i = 1, . . . . k) from (2.6) we obtain a system of equ- 

ations homogeneous in &h (t) (h = 1, . . . . n) . When ah (to) = 0 (h = i, . . . . n), this system 
has a unique solution &h (t) S 0, i.e. relations (1.3) represent the first integrals of (1.2). 
But then from (2.7) it follows that ul(t) E 0 (Z= 1, . . . . k) or 

h, = ‘VI,’ -+ ; i Mi !!!! qs* (1 = 1, . ) k) 

i=l s-k+1 ‘I2 
(2 3) 

Let the integral Wcontain q < n arbitrary constants a,,. We shall show that 

aW/aay=by (r=l,...g, b.f=cmst) (2.9) 

also represent the first integrals of (1.2). Let us insert W into (1.5) and differentiate 
the result with respect to uY 

Hence on the basis of (1.2) and (1.9) we obtain 
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The above identities mean that the total time derivatives of (2.9) are, by virtue of 

(1.2), equal to zero. 
Since the conditions (1.13) hold when the relations (1.12) exist, the latter represent 

the sufficient condition for (1.3) and (2.9) to be the first integrals of (1.2). 

a. If a certain function W satisfies 

f(*, I..., qn’w,as I..., Z)=o, qrl, . . . . (i,.w.gr 1..., E)=o 
it also satisfies 

Here IF, fl is the Jacobi bracket which becomes the Poisson bracket when af / 8~ = 
= 8F I i3W = 0 The proof of this theorem is based on the fact [lS] that substitution of 
the solution W into the equations f = 0 and F = 0 converts the latter into identities. 

Relations (1.13) obtained from Eq. (1.7), equations of constraints (1.9) and the D’Al- 
embert principle are not, generally speaking, identities as ql, . . . . qn entering these re- 

lations are not arbitrary but represent a solution of (1.2). For this reason the Poisson 

brackets composed of the left hand sides of Eqs. (1.13) need not necessarily be equal to 
zero. The Poisson brackets for (1.12) are not zero for the same reason. 

Example. Let us consider the problem of a homogeneous sphere rolling dn a hori- 

zontal plane [lS]. We assume the sphere to be of unit mass and denote its radius by a. 
The position of the sphere is defined by two Cartesian coordinates q1 = x and q1 = y of 
the center of the sphere relative to a fixed coordinate system, the zy -plane of which 

is horizontal, and by three Euler angles q 3 = cp, q4 = 9 and q3 = B.The kinetic energy 

of the sphere and the equations of constraints expressing the fact that the velocity of the 

point of contact of the sphere with the plane is zero, are 

T = */s [qlaL +q~" + "/sa" (q3'2 + qds2 + qs'" + ~q3.q~' cosqa)] 

qi' + a (qr' sin q5 cos q* - q5' sin 43) = 0 
q2' + a(q3’sin (15 sin q4 + q5' cos q4) = 0 

If the forces applied to the system are not potential, the equation of motion can be 
written as 

. al 
9j =apj* pi’ = - $I_ + Qj+ i hiAil (j=i,...,n) (3.1) 

I i=l 

where Qj denote the generalized forces. When Qj = dU / dqt (i = 1, . . . , n), Eqs. (3.1) 
coincide with (1.2) (H = 7’ - (y). 

Having differentiated the equations of constraints with respect to time we can use 
(3.1) to determine the values of the multipliers and, consequently, the constraint reactions 

Hj=x hiAij (i=l,...,n) 
i=l 

which in the present example are given in the form 
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r 

HI = -& (QI ctg q5 
5 2 

- Q3 cosec q5) cos q4 + x QS sin qa - 7 QI 

Rz = -& (44 ctg q5 - QS cosec q5) sin q4 - &Q:,cosqr -+Qz 

Rs = + (44 cos q5 - 43) - $ (QI cos q4 + Q2 sin qa) sin qj 

J14 = 0 
2a 

Q5 + yr (QI sin q4 - Qz cos qaj 

while the conditions (1.12) become [lo] 

aw aw 5 aw --_,o sin Q4 G - CoS 44 aqz - za aq5 

(3.2) 

(3.3) 

From (2.2) it follows that the force function U does not influence the dependence of 
Mi (i = 1, . . . . k) on bW/@j (i = I,..., n). 

The following statement concerning the system (3.3) was made in [lo]: “By construct- 

ing the Poisson bracket it can easily be shown that the.resulting system is incompatible 
(by this the authors mean that W = const). Consequently, the potential method of inte- 
gration is not applicable to the nonholonomic systems in question. ” This is however false 
in the case of an inertial motion of a sphere, i.e. when Qi = 0 (j = 1, . . . . 5). Indeed, 
in this case the reactions (3.2) are equal to zero, equations (1.2) assume the Hamilton- 
ian form (H = T),the relations (1.3) - (1.5) hold and the conditions (3.3) in which Ml = 

= M, = 0 also hold. 
The following is also of interest. Let Qj (j = 1, . . . , 5) be independent of velocities, 

then the reactions (3.2) are also independent of velocities. Clearly, Eqs. (3.1) of motion 
of a sphere are Hamiltonian only when the resultant force Qi + Rj (j = 1, . . . . 5) is poten- 
tial. We consider two cases 

au 
1) Q,=Qa=0. Q3=q3t 

au au 

44 = ag4 1 Q5= agsv u = u (43, q47 45) 

If (3.1) are Hamiltonian, then we have the following particular relation 

aR1 afb aR3 ark 
%4 =- 

aq4 maql=aQp=o 

from which it follows that Q, cos qs - Q, = 0 and Qa = 0, which implies that U = 
= const. 

2) Q1 = Ql(qn q,) Q, = Q&n qrh 43 = Q4 = Q5 - 0 

If (3.1) are Hamiltonian, then we have the following particular relation 

8R, / cYq4 = PR 5 / aq’r = 0 

from which Q1 = Q, = 0 follows. 
Thus, when the dynamic forces applied to the sphere can be reduced to a potential 

moment or to a resultant force passing through the center of the sphere, the system (3.1) 

is not Hamiltonian. 

4, let us assume that conditions (1.13) hold. Then Eqs. (1.2) can be written in the 
Hamiltonian form. Indeed, using (1.2), (1.3). (1.13) and (2.8) we obtain 
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i ‘,A,j=%$.-z o’=i,....n), Lo= ii N!A,,,q,, 
i=t 3 3 h=l I=L 

Therefore the equations of motion of the system written in the form of Lagrange equ- 
ations with constraint multipliers assume the form of the Lagrange equations of the sec- 
ond kind with the function Lr = 1; - LO. These in turn can be transformed i,nto the Ha- 
milton equations equivalent to (1.2), by introducing the generalized impulses 

t 

Pj = .!t$ = pj - 2 MiAi,, 

I i=1 * 
(j = i, . . . , n) 

The Hamiltonian is 
n n 

H, = ~ pjQj’ -L, = 2 Pj’lj’ -L = 

j=L j=L 

k k 

= H (ql,. . . > q,, PL + 2 MiAiL,. l 7 ‘n + 2 l”i’i,l) 

i=l i=l 

If the complete integral IV1 of the Hamilton-Jacobi equation 

k 

q1,. . ( q,, ~ + ~ MiAil,. ’ .( 

i=l 

$?+i hIGAin) =O 

?a i=L 

has been found, then Pj= i?W, / 89,: (j = 1, . . . . n) . However, comparing these express- 
ions with (1.3) we find that aI%‘, / aqj = ow / aqj (j = 1, . . . . n), therefore Pi = aw’/ aqj; 
the Hamilton-Jacobi equation coincides with (1.5) (A~O = 0, i = 1, . . . . k). 

Conditions (1.13) are obviously the first integrals of the following equations of motion 

aH aH 

qj *= apj’ 
p; = _.--. 

I dqj 

(i = I,..., n) 

For this reason,by the Poisson theorem,the Poisson brackets constructed for the left-hand 
parts of (1.13) remain constant along the trajectories of the system. In the previous sec- 

tion we have shown that these constants must not be assumed simultaneously equal to 

zero. 

5. The compatibility of (1.5) and (1.13) can be investigated as follows. Let W be 
the complete integral of (1.5). From (1.4) we find 

qj = aj!l. a,, . . . , a,, b,, . . . , bn) (j = 1,. . . * n) (5.1) 

choosing the constants al, . . . , an, b,, . . . , b, so as to satisfy the equations of constraints 
at t = t,. The other 2n - kconstants remain arbitrary. We now insert Eqs. (5.1) into 
(1.13). If the resulting relations are satisfied identically, then in accordance with Sect. 
2 the formulas (5.1) represent the general solution of (1.2). If, however, the relations 
obtained impose some restrictions on the remaining 2n - k arbitrary constants and 
W # cons& then according to Sect. 2 the formulas (5.1) represent a particular solution 

of (1.2). 

6. The proposedmethod of integrating the equations of motion with constraint mul- 
tipliers represents a generalization of the Hamilton-Jacobi method, and becomes iden- 
tical to it when Mi = 0 (i = 1, . . . . k).In the latter case the method yields only such 
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motions of the system, in which the constraint reactions (2.8) are zero. For systems 
with two degrees of freedom (n - k = 2) conditions (1.13) assume the form (1.12) (in 

some cases the conditions (1.13) and (1.12) remain equivalent even ii n - k > 2). When 
k > 2, these conditions may hold when 1Mi # 0 li = 1, . . . . k) [ll]. 

The author expresses his gratitude to E, N. Berezkin who read the first draft attentively 
and made a number of valuable comments. 
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PLANE PERTURBED MOTION OF A MATERIAL POINT OF VARIABLE MASS 

PMM Vol. 36, h”l, 1972, pp* 172-174 
C. N. GRUDTSYN 

(Saratov) 
(Received May 13, 19’71) 

Motion of a material point of variable mass in a central force field in the pres- 
ence of a perturbing force is considered. The solution of the problem is obtained 

in quadratures. 

1. We consider a motion of a material point of variable mass in a central perturbing 
field obeying the following law 

P(r) = Xmr-” (1.1) 

where h. and n are the constant field characteristics (when n = 2 and h. < 0 , we have 
the case of a Newtonian gravitational field), m is the mass of the material point and r 

is its distance from the center. 
We assume that the mass of the point is a continuously differentiable function of its 

distance from the center 

m = mof (4, r = r (t) (m = m,, r = 70, for t = 0) (1.2) 

and we also assume that 

u = p(r) Y (1.3j 

where v is the velocity of motion of the point in the inertial frame of reference, u is 
the velocity of the particles rejected (or assimilated) by the parent point up to the given 

instant and p(r) is a specified continuous function. Then the reaction force can be written 
as R (r) = m0r 1’ (r) g (r) v, g Pi = P (4 - 1 (1.4) 

iYhere a dot denotes derivative with respect to ttme and a prime, with respect to r. 
We assume that in addition to the forces given, a perturbing force F* lying in the plane 
of the trajectory and orthogonal to the vector v is also acting on the point. An analogous 
problem of motion of a point of constant mass was studied in [l], where it was shown 
that if 1“* = moF (Tj U) (1.5) 

then the problem can be reduced to quadratures. We shall show that this remains true 
for the case of a point of variable mass. 

Equations of plane motion of a point under the conditions (1.1) - (1.3) have the follow- 
ing form in the polar coordinates: 

I’ 
r (ST’)’ = L F’F + - gr’r’cp’ 

I f 
(i.6) 


